

JAVAFO PAIRING ENGINE ADVANCED USER MANUAL

(note: red is used to highlight changes from the previous version)

Introduction 1

JaVaFo as a stand-alone program 1

How to input the data 1
Interpretation extensions 2
Unusual info extensions 2
Extra codes extensions 3
TRF(x) sample 3

How to invoke JaVaFo 3

How to read the output of JaVaFo 4

Extensions and other options 5
Absent players 5
Scoring point system 5
Ranking id 7
First round pairing 8
Accelerated rounds 9
Forbidden pairs 10
Check-list 10
Release and build numbers 11

Pairings Checker 11

Random Tournament Generator (RTG) 12
Reducing randomness by way of a (RTG) configuration file 12
Reducing randomness by way of a model tournament 13
Repeating randomness (by using a seed) 14

Quick recap 14

JaVaFo as Java archive 15

Introduction
JaVaFo is both a stand-alone program (provided that a java virtual machine exist to execute it) and an archive (.jar)
that can be used by a program written in the java programming language.

This manual describes both possibilities.

JaVaFo as a stand-alone program
In the following chapters, it will be described how it is possible for an external program to integrate the JaVaFo
Pairing Engine in order to use it to prepare pairings according to the FIDE (Dutch) Swiss System (see section
C.04.3 from FIDE Handbook).

How to input the data
Albeit JaVaFo supports many input formats (and other ones could be easily added), the most practical way to
input data to JaVaFo is using the TRF(x), where TRF (also called TRF16 to distinguish it from the TRF06 used
in the past), is the official FIDE Tournament Report File defined in the FIDE handbook (see), and the (x) stands
for some extensions that have to be introduced in such format to make it useful for exchanging data between
different programs. To be clearly understood by JaVaFo, it is recommended that such file is written using the
UTF-8 encoding.

https://www.fide.com/FIDE/handbook/C04Annex2_TRF16.pdf
http://web.archive.org/web/20181223232906/https://www.fide.com/fide/handbook.html?id=170&view=article
http://web.archive.org/web/20181223232906/https://www.fide.com/fide/handbook.html?id=170&view=article

The extensions to the TRF16 are partly made by adding some new codes (which are alphabetic in order to be
completely different by the current numeric codes defined for the format1), partly by allowing writing in the TRF
something that is not normally found in a TRF, partly by interpreting some data contained in it.

Interpretation extensions
A TRF is normally used only to generate data at the end of the tournament. The first extension is to allow the
TRF to be generated also during the tournament. This partial TRF is fed to JaVaFo as its input.

It is important to note that the field called Points in the TRF16 definition (position 81-84) has to contain the
correct number of points that each player got, because that number is tentatively used to infer the scoring point
system used (i.e. the classic 1, ½, 0 or another one, like 3, 1, 0; or even weirder ones - for the complete list of
values that JaVaFo tries to infer, see the scoring-point parameters in the section Reducing randomness by way
of a (RTG) configuration file - scoring-point parameters).

However, with version 2.2, the above methodology of computing the scoring-point parameters has been
deprecated. Such parameters, if different by the standard ones, have to be explicitly defined by using the option
XXS described in the chapter dedicated to the Extensions and other options below (see Scoring point system).

Unusual info extensions
The partial TRF contains information regarding the rounds that have already been played. However it says
nothing regarding the current round (i.e. the one that should be paired). The most important thing is to tell
JaVaFo which players should be paired or, which is the same, which players will not play that round.

If everybody plays in the current round, the partial TRF is enough. Otherwise, if somebody is missing, there
are two not-contrasting ways to pass this piece of information to the pairing engine.

The first one consists in inserting into the proper columns for the current round the result code that is normally
used for absent players, i.e. "0000 - Z".

For the sake of clarity, it is also possible to use the codes that will be present in the final TRF16 (i.e. "0000 -
H", for half-point-byes or "0000 - F" for the deprecated full-point-byes), but, in these cases, also the
field Points (position 81-84, see above) must be updated.

Blank codes are obviously ignored in this instance, as each present player is identified by the absence of a
result code.

Although this methodology has been not deprecated yet, in order to tell the pairing engine which players are
not to be paired in a round, it is preferable to use the option XXZ described in the chapter dedicated to
the Extensions and other options below (see Absent players).

Extra codes extensions
As said in the introduction regarding input data, some alphabetic codes were added in order to transmit
additional information to the pairing engine. Some of them are not essential (and will be shown in a following
chapter), but one is: the pairing engine must know the total number of rounds in the tournament in order to
know if the current round is the last one.

This is obtained by means of the following new alphabetic code:

XXR number

where number is the number of rounds of the competition.

TRF(x) sample

1 The idea of alphabetic codes comes from the author of the TRF, Christian Krause, chairman of the Systems of Pairings and Programs
(SPP) FIDE Commission

In the linked file, there is an example of the TRF(x) used to pair the fifth round of the XX Open Internacional
de Gros which includes everything said above regarding the TRF extensions.

TRF(x) Sample

According to what was discussed before, it should be pretty evident that the players 22, 26 and 43 will not play
the fifth round (look at the field Points for the player 43, though).

How to invoke JaVaFo
Although, the title of this chapter is "JaVaFo as a stand-alone program", this terminology is highly simplicistic.
In reality, JaVaFo is an executable java archive (jar), and here is described how to invoke a similar element.

First of all, a Java Virtual Machine (JVM) is needed. The beauty of this is that the operating system (O.S.) in use
is not important. JaVaFo can run on any O.S. provided that a Java Virtual Machine exist in it. Be java the
command to activate it.

Then the pairing engine itself, javafo.jar, is needed. The latest version of the jar can always be downloaded from
the following web-site:

http://www.rrweb.org/javafo/current/javafo.jar

You can also find previous versions of javafo.jar replacing current with 1.0, 1.1, 1.2 and so on. Be aware, though,
that the releases until 1.4 do not follow the specification of this manual, but are tied to ancient versions of the
Dutch Rules.

The downloaded jar archive can be stored anywhere in the file system. Be JVF_DIR the pathname of the folder
where javafo.jar has been downloaded.

The first test to see if both the JVM and the pairing engine work is to write in a command prompt:

 java -ea -jar JVF_DIR\javafo.jar (or)

java -ea -jar JVF_DIR/javafo.jar

depending on the O.S. in use. The first line works for Windows. From here on, only the Windows commands are
mentioned. Moreover, for the full command java -ea -jar JVF_DIR/javafo.jar, the string javafo is used, as if a
file named javafo.bat exists somewhere in a PATH directory and contains the statement:

@java -ea -jar JVF_DIR/javafo.jar %*

If everything is properly set up, the above command should produce the following output (or something similar,
more up-to-date):

JaVaFo (rrweb.org/javafo) - Rel. 2.2 (Build 3222)

After checking that the pairing engine is ready, a TRF16 file can be input to it (a TRF06 will still work, but the
output is not completely trustful). Even this file can be placed anywhere in the file system. Be TRF_DIR the
pathname of the folder where the file trn.trfx is located (trn.trfx is just a mnemonic name; dummy.foo is an
equally valid name).

It should be also decided where the pairing engine output goes. Be OUT_DIR\outfile.txt the pathname of said
output file (as above, this file can be called in any way). Be aware that no warning is issued if the file pre-exists
before invoking javafo.jar.

From the same command prompt mentioned above, the following command line is needed to produce the
pairings for the current round:

 javafo TRF_DIR\trn.trfx -p OUT_DIR\outfile.txt

http://www.rrweb.org/javafo/current/javafo.jar
file:///S:/SPPC/JaVaFo_AUM/aum-Rules2017/TRFXSample2.txt

The meaning of the most useful options will be described in a following chapter. But the above command is the
most generic way to invoke the javafo.jar pairing engine. If OUT_DIR\ is the same than TRF_DIR\, then
OUT_DIR can be dropped, so that

 javafo TRF_DIR\trn.trfx -p outfile.txt

generates outfile.txt in TRF_DIR. If TRF_DIR is the current directory (i.e. "."), TRF_DIR\ can be dropped.

How to read the output of JaVaFo
When invoked as shown in the previous command, the output is the file outfile.txt. The structure of this file is
very simple:

[1] the first line reports the number of generated pairs (be P)

[2] from the second to the (P+1)-th line, each line contains a pair for the current round. Such pair is made
using the pairing-id(s) of the players, i.e. the id(s) that are defined in the 001 line of the TRF(x). The first
element of the pair gets white, the second one black. If the number of players to be paired in the round is
odd, one of the pairs is formed by the id of the player that gets the pairing-allocated-bye, followed by 0.

The TRF sample shown above will produce the following output:

25
1 2
3 4
5 6
7 13
11 21
23 12
19 16
17 52
35 18
8 24
9 26
37 10
14 29
45 15
46 20
27 38
34 30
39 31
41 32
42 33
44 48
25 49
40 50
51 36
47 0

If something goes wrong the output file is not generated. Something is usually displayed on standard output or
standard error, but it may be quite difficult to interpret.

The most common cause for an error is a malformed TRF(x). However, if the TRF(x) is totally correct, than an
error must have occurred in the pairing engine. This may occasionally happen, but it is a very unlikely event
(although not an impossible one, of course).

Extensions and other options
What was presented in the previous chapters covers the majority of the situations that can happen in a
tournament. Sometimes, however, something may happen that requires some extra care.

Absent players
In Unusual info extensions, it has already been shown a way to register the players that are not going to be
paired in a round. An alternative way is to use the extension code XXZ, the format of which is:

XXZ list-of-pairing-id(s)

where the pairing-id(s) following XXZ are intuitively the ones of the players that will miss the round to be
paired.

There can be multiple XXZ records.

Scoring point system
In Unusual info extensions, it has already been shown a deprecated way to compute the scoring-point
parameters. The securer way is to use the extension code XXS, the format of which is:

XXS CODE=VALUE

where VALUE is floatingpoint-number (e.g. 1.5), and CODE is one of the following codes:

code
default
value

description

WW 1.0 points for win with White

BW 1.0 points for win with Black

WD 0.5 points for draw with White

BD 0.5 points for draw with Black

WL 0.0 points for loss with White

BL 0.0 points for loss with Black

ZPB 0.0 points for zero-point-bye

HPB 0.5 points for half-point-bye

FPB 1.0 points for full-point-bye

PAB 1.0 points for pairing-allocated-bye

FW 1.0 points for forfeit win

FL 0.0 points for forfeit loss

W 1.0 encompasses all the codes WW, BW, FW, FPB

D 0.5 encompasses all the codes WD, BD, HPB

L 0.0 encompasses all the codes WL, BL

The sequence CODE=VALUE can be repeated multiple times in a XXS record, or there may be multiple XXS
records. Codes that are not mentioned in the XXS records are assumed to have the standard value. Hence, when
the standard scoring point system is used, there is no need to put XXS codes in the input TRF(x).

When a shortcut and a code encompassed by such shortcut are both used, the order (left-right, top-down) is
decisive, because the latter element overrides the former.

Note that when XXS is used, javafo makes a strict check that there is an absolute correspondence between the
field Points (characters 81-84, in the 001 record of the TRF(x)) and the results. If the check fails, the program
may crash.

Examples

1. Although not needed, the standard scoring system may be described by:

XXS WW=1 WD=.5 WL=0 BW=1 BD=0.5 BL=0
XXS FL=0 FW=1
XXS PAB=1 FPB=1 HPB=.5 ZPB=0

or by:

XXS W=1 D=0.5 L=0 FL=0 ZPB=0 PAB=1

2. The sequence:

XXS PAB=3 D=1 W=3

is enough to describe the 3/1/0 scoring point system (with the PAB equal to a win), and

XXS W=3

XXS D=1

is enough to describe the 3/1/0 scoring point system with the PAB equal to a draw (because the
original PAB=1 is assumed).

3. XXS PAB=.5

is enough, when a half-point PAB is requested and anything else is standard.

4. The 3/2/1/0 score system, which is often talked about, can be represented by:

XXS FL=0 W=3 D=2 PAB=2 L=1 ZPB=1

(note: this is one possibility - FL=0 may be omitted, PAB may be equal to 3, and ZPB may be equal to
0, and there also other possibilities).

5. As an example of overriding:

XXS W=3 D=2 L=1
XXS PAB=3
XXS FPB=0 HPB=0 ZPB=0

is a 3/2/1/0 scoring system where all missed rounds net zero points, but writing:

XXS PAB=3
XXS FPB=0 HPB=0 ZPB=0
XXS W=3 D=2 L=1

will not reach the same goal because W=3 overrides FPB=0 (and D=2 overrides HPB=0).

Ranking id
JaVaFo identifies players with two numbers, the player-id and the positional-id.

The first one is obvious and it is the one that is associated with the 001 record in the TRF(x). The second one is
implicitly given by the position of the players in the TRF(x). Albeit this is not mandatory, players are normally
inserted into the TRF(x) in accordance with their pairing-id, so that the two sets of data (pairing-id(s) and
positional-id(s)) are basically coincident.

They may differ, though, and sometimes for good reasons. For instance, please give a look at the linked file,
which is a modified version of the previous sample: the players with a local rating (0 for FIDE) are placed at
the end of the list.

Ranked TRF(x) Sample

The positional-id is 1 for Mirzoev, 6 for Lakunza (player-id: 7), 29 for Aizpurua (player-id: 32), 42 for Abalia
(player-id: 42), 48 for Gorrochategui (player-id: 6) and so on.

JaVaFo computes the pairings using the pairing-id(s). Beware: JaVaFo uses the pairing-id(s), not the ratings, as
specified by the FIDE (Dutch) rule A.2.b. This is a programming choice that cannot be modified.

However, the calling program is not forced to follow the same logics. If it desires that the rating be prevalent, it
has two alternatives:

[a] before calling JaVaFo, redefine the pairing-id(s) in such a way that increasing pairing-id(s) are assigned
to players with decreasing rating (which, by the way, is the most standard situation)

[b] insert players in the TRF(x) in order of rating and tell JaVaFo to use the positional-id(s) (also called
ranking-id(s)) instead of the pairing-id(s)

The first choice is the recommended one. However, in order to let the calling program use the second
alternative, JaVaFo provides the extension code:

file:///S:/SPPC/JaVaFo_AUM/aum-Rules2017/RankedTRFXSample2.txt

XXC rank

The 'C' in XXC stands for configuration. The word rank tells JaVaFo to use the positional-id(s) in order to
produce the pairings. The output file still contains the pairing-id(s).

If the "XXC rank" clause is added to the file shown in the Ranked TRF(x) Sample, JaVaFo will return the
following output:

25
1 2
3 4
5 6
7 13
11 21
23 12
19 16
17 52
35 18
8 24
9 26
45 10
14 29
37 15
46 20
27 31
39 32
44 33
34 30
41 38
42 48
25 50
40 49
51 36
47 0

which is different by the previous one (differences highlighted in pink).

First round pairing
Although the rule for pairing the first round is very simple and therefore the calling program can generate it
directly, it is recommended to use JaVaFo also to generate the first round.

The only information to pass to the pairing engine is the initial-colour, as defined in the section E of the FIDE
(Dutch) Rules. There are three possibilities:

[a] white

[b] black

[c] let JaVaFo make the choice (i.e. random)

The latter choice is the default. Beware that it is a semi-random choice: to compute it, JaVaFo uses the hash of
some data taken from the TRF(x); this means that repeating the process with the same TRF(x) will give the
same result each time. Therefore, in order to use the JaVaFo random choice, the calling program needs doing
nothing.

Otherwise, to force the choice [a], the TRF(x) must contain a line

XXC white1

To force the choice [b], the TRF(x) must contain a line

XXC black1

Please note that the XXC code is cumulative, so it is followed by all the configuration choices made by the
calling program. For instance:

XXC rank black1

is a valid extension line and combines what was described in the previous and in the current chapters.

Accelerated rounds
The standard way to have accelerated rounds is to assign fictitious points to some players. How to assign such
points depends on various methods and only one of them has been codified in the old FIDE Handbook (see).
Hence, this is not a matter of discussion here (on the other hand, see Baku Acceleration Method, below).

However, JaVaFo can be informed of the fictitious points that are assigned to each player, using the extension
code XXA.

The format for this code is

XXA NNNN pp.p pp.p ...

Where:

= XXA starts at column 1

= NNNN (player's id - same as in 001) starts at column 5

= pp.p (fictitious points) starts at column 10+5*(r-1), where r is the round in which the fictitious points
must be added

It is mandatory to keep the full record of the fictitious points assigned round by round, because this record is
used to determine the floaters history of each player (actually, if pairing for round X, it is enough to maintain
the fictitious points history from the rounds from X-3 to the current one - but it seems simpler, also from a
pairing-checking standpoint, to keep the full history).

Here is an example from a real tournament where seven accelerated rounds were used:

TRF(x) Acceleration Sample

Baku Acceleration Method
Upon request, JaVaFo can pair the current round by applying the Baku Acceleration Method (see C.04.5.1 in
the old FIDE Handbook). In order to do so, JaVaFo should be invoked using the option -b (note: old FIDE
Handbook, i.e. works only for tournaments longer than eight rounds).

Beware that JaVaFo applies the Baku methodology only to the current round, not to the already paired
rounds. JaVaFo relies on the input TRF(x) to correctly convey the information (basically the fictitious points)
related to the previous rounds.

Forbidden pairs
Sometimes some players are to be prevented from meeting each other. JaVaFo can be directed to fulfill this
need by means of the extension code XXP.

The format of this code is:

XXP list-of-pairing-id(s)

All the players mentioned in the list will not be paired against each other.

There is no limit on how many times a player can be part of a XXP list. So, for instance, if games between
members of two groups of players cannot happen (for instance, assume that <13, 78, 102> and <68, 111> be
these two groups), the following list of XXP extension codes should be generated:

XXP 13 68
XXP 13 111
XXP 78 68
XXP 78 111
XXP 102 68
XXP 102 111

http://web.archive.org/web/20170912195924/http://www.fide.com/component/handbook/?id=204&view=article
http://web.archive.org/web/20170912195924/http://www.fide.com/component/handbook/?id=204&view=article
file:///S:/SPPC/JaVaFo_AUM/aum-Rules2017/AcceleratedTRFXSample2.txt
http://web.archive.org/web/20170912195924/http://www.fide.com/component/handbook/?id=204&view=article

Check-list
Upon request, JaVaFo can generate a check-list, i.e. a file that summarizes the situation after the pairing, with
the following contents (taken from the previous TRF(x) sample):

Check-List Sample

In the check-list, the majority of the fields are pretty intuitive. Some more explanation may be
needed for the columns Pref, -1R, -2R and all the columns G-n.

Pref reports the preference of the players. The following table explains the symbols and the
associated preference:

WWW BBB Double absolute preference (see A.6.a); both conditions are met: twice-same-
colour and colour-difference higher than |1|)

WW BB Absolute preference for colour-difference higher than |1| (see A.6.a)
W1 B1 Absolute preference for twice-same-colour and colour-difference equal to 1 (see

A.6.a)
W B Absolute preference for twice-same-colour and colour-difference equal to 0 (see

A.6.a)
(W) (B) Strong colour preference (see A.6.b)
(w) (b) Mild colour preference (see A.6.c)

A No preference (see A.6.d)

-1R and -2R are references to the floating history of the players. They show the kind of float (up or
down) respectively in the last and in the penultimate round.

The columns G- r , ..., G-1 represent the opponents of a player in the last g-th game he played
(unplayed rounds are not considered). The presence of a [X] in the first of such colums means that
the player cannot receive the pairing-allocated-bye.

In order to produce the check-list, JaVaFo should be invoked using the option -l, optionally followed by the
name of the file which to put the check-list in. If such name is missing, JaVaFo will produce the file trn.list,
provided that -l follow the input file name.

For instance, this works:

javafo TRF_DIR\trn.trfx -p OUT_DIR\outfile.txt -l

and this works too:

javafo TRF_DIR\trn.trfx -p OUT_DIR\outfile.txt -l ANY_DIR\outfile.list

As usual, if ANY_DIR is omitted, outfile.list is produced in the TRF_DIR.

Release and build numbers
As mentioned above, the simple command javafo will print the release version and build on the standard
output.

If an input filename is specified, this information is not output unless the -r option is used.

Pairings Checker
JaVaFo can also be used to check the correctness of a TRF produced by other software: the command line:

javafo TRF_DIR\trn.trfx -c

will produce on standard output something similar to what is shown below (related to the tournament described
by the TRF(x) Acceleration Sample), with obvious meaning:

AcceleratedTRFXSample2: Round #1

file:///S:/SPPC/JaVaFo_AUM/aum-Rules2017/AcceleratedTRFXSample2.txt
file:///S:/SPPC/JaVaFo_AUM/aum-Rules2017/ChecklistSample2.txt

AcceleratedTRFXSample2: Round #2
AcceleratedTRFXSample2: Round #3
AcceleratedTRFXSample2: Round #4
AcceleratedTRFXSample2: Round #5
AcceleratedTRFXSample2: Round #6
 Checker pairings Tournament pairings
 55 - 73 55 - 71
 61 - 71 74 - 73
 74 - 75 61 - 83
 80 - 83 80 - 75

AcceleratedTRFXSample2: Round #7
AcceleratedTRFXSample2: Round #8
AcceleratedTRFXSample2: Round #9
 Checker pairings Tournament pairings
 76 - 78 76 - 75
 74 - 75 61 - 78
 80 - 61 80 - 74

In order to check a single round (and not the whole tournament), add the number of the round to the
aforementioned command as in:

javafo TRF_DIR\trn.trfx -c 6

The output of this command for the previous sample is shown below:

AcceleratedTRFXSample2: Round #6
 Checker pairings Tournament pairings
 55 - 73 55 - 71
 61 - 71 74 - 73
 74 - 75 61 - 83
 80 - 83 80 - 75

Random Tournament Generator (RTG)
In order to help an external pairing-checker, JaVaFo can generate random or quasi-random tournaments against
which the external pairing-checker can be tested.

The command line (in its simplest form):

javafo -g -o trn.trf

will generate in the current folder (any pathname like TEST_DIR\trn.trf can be specified, though) a file trn.trf,
which is a TRF16 of a random tournament, with a random number of players (usually between 15 and 415), a
random number of rounds (usually between 5 and 17) and game results that depend on the rating difference
between the involved players, applying a formula elaborated by Otto Milvang (see here, Appendix A, pag.
8) that, in the long run, will distribute points based on what actually happens in rated tournaments.

In the same command line, the option -b (apply the Baku Acceleration Method) can be added.

The most important utilization of this feature is to generate thousands of tournaments and then test them with the
appropriate checker. Therefore it is advisable to use (on Windows) a statement like that:

@for /L %p IN (1000,1,5999) do @javafo -g -o test%p.trf

which will generate exactly 5000 random tournaments in the current folder.

The previously mentioned randomness in the generated files can be reduced in two alternative ways, using
either a (RTG) configuration file or a model TRF.

Reducing randomness by way of a (RTG) configuration file

http://pairings.fide.com/images/stories/downloads/2016-probability-of-the-outcome.pdf

A (RTG) configuration file is a property-file2 where the following parameters (properties) may be defined (for
the explanation of each single parameter, please look at the sample below):

ParameterName Default (when the parameter is not defined)
PlayersNumber A random number between 15 and 415

RoundsNumber A random number between 5 and 17

ForfeitRate A random number between 10 and 100

QuickgameRate A random number between 0 and 20

ZPBRate A random number between 0 and 20

HPBRate A random number between 5 and 45

FPBRate A random number between 0 and 2

HighestRating A random number between 2400 and 2800

LowestRating A random number between 1400 and 2300

Groups A random number between 0 and 10

Separator A random number between 20 and 70

The following twelve parameters are also called scoring-point parameters

(they are the values that JaVaFo tries to infer using the field Points (position 81-84) of TRF16)

WWPoints 1.0 points for win with White

BWPoints 1.0 points for win with Black

WDPoints 0.5 points for draw with White

BDPoints 0.5 points for draw with Black

WLPoints 0.0 points for loss with White

BLPoints 0.0 points for loss with Black

ZPBPoints 0.0 points for zero-point-bye

HPBPoints 0.5 points for half-point-bye

FPBPoints 1.0 points for full-point-bye

PABPoints 1.0 points for pairing-allocated-bye

FWPoints 1.0 points for forfeit win

FLPoints 0.0 points for forfeit loss

An example of a (RTG) configuration file (with comments) is shown here:

Random Tournament Generator Configuration Sample

In order to being used by the JaVaFo Random Tournament Generator, the (RTG) configuration file must be
specified as a parameter to the -g option. Therefore, the full command line is:

javafo -g RTG_DIR\rtg.cfg -o TEST_DIR\trn.trf (or)

javafo -g RTG_DIR\rtg.cfg -b -o TEST_DIR\trn.trf

if there is the desire to apply, when feasible, the Baku Acceleration Method.

Reducing randomness by way of a model tournament
A model tournament is a normal input TRF file with meaningful player ratings, which serves as a model in
order to define all the parameters mentioned above.

For instance, from the input file seen in the TRF(x) Acceleration Sample, the following values are
automatically retrieved:

2 A property-file is a file where empty lines have no meaning and lines introduced by the symbol # contain a comment.
The meaningful lines have the format PropertyName = PropertyValue , which assigns to the named property (or parameter) the value
specified by PropertyValue.

file:///S:/SPPC/JaVaFo_AUM/aum-Rules2017/AcceleratedTRFXSample2.txt
file:///S:/SPPC/JaVaFo_AUM/aum-Rules2017/RTGConfigurationSample2.txt

ParameterName Value
PlayersNumber 84

RoundsNumber 9

ForfeitRate 2

QuickgameRate 0

ZPBRate 30

HPBRate 0

FPBRate 0

Note that the ratings parameters HighestRating, LowestRating, Groups and Separator are not considered, as the
ratings are exactly the same as the ones present in the input model file, while the scoring-points parameters are
not shown as their value is equal to the corresponding default value.

As the model file is a standard input file, the command line to use it is:

javafo MODEL_DIR\model.trf -g -o TEST_DIR\trn.trf

It is also possible to add the option -b (apply Baku Acceleration Method).

Repeating randomness (by using a seed)
The oxymoronic title means that it is possible to generate (or re-generate) the same random TRF replacing the
configuration file (e.g. RTG_DIR\rtg.cfg) with a long integer number (from 0 to 9223372036854775807).

For instance, the command:

javafo -g 18980522 -o TEST_DIR\trn.trf

will always generate the following file:

Seed=18980522 Tournament Report File

as long as the build number of javafo.jar stays the same.

Note 1. The seed of any tournament randomly generated by javafo RTG is retrievable from the
field 012 (the first line of the output TRF).

Note 2. If the name of the configuration file is a long integer number, it is taken as a seed.

Quick recap
Standard invocations:

javafo [-r]
javafo [-r] input-file -c [round-number]
javafo [-r] input-file [-b] -p [output-file] [-l [check-list-file]]
javafo [-r] [model-file] -g [-b] -o trf-file
javafo [-r] -g config-file [-b] -o trf-file

The square brackets [] represent something optional.

Some explanations:

javafo indicates a file named javafo.bat with the following contents:

@java -ea -jar JVF_DIR/javafo.jar %*

-r show JaVaFo release and build numbers

input-file in TRF(x) format
model-file in TRF(x) format, model file for the random-tournament-generator
config-file usually, it is a configuration file for the random-tournament-

generator; however, if config-file is a long integer number (from 0 to

file:///S:/SPPC/JaVaFo_AUM/aum-Rules2017/18980522.txt

9223372036854775807), such number is used as the seed for the random-
generator used by the random-tournament-generator

-c [round-number] use JaVaFo as a checker
round-number: number of the round to be checked; if missing, all the rounds
are checked

-g use JaVaFo as a random-tournament-generator; with this option at most one
between model-file and config-file may be present

-b apply, if feasible, the Baku Accceleration Method

-p [output-file] output-file: full or relative pathname where to write the pairing; if missing, the
output file will be defaulted to standard output

-l [check-list-file] check-list-file: absolute or relative pathname where to write the check-list; if
missing, the check-list will be defaulted to the input-file directory, with the
same basename as the input-file and an extension of .list.

-o trf-file trf-file: full or relative pathname where to write the (auto)generated TRF file

JaVaFo as Java archive
As an experimental tool, with versions 2.x, it is possible to include parts of JaVaFo in a Java project and have the
possibility to directly interface JaVaFo as a pairing engine, a free pairing-checker or a random-tournament-
generator.

The first operation is to open javafo.jar (which is an archive that can be usually opened with the same tools that
open .zip or .rar files) and extract the file main.jar. The latter is the file to be included in a Java project. It exposes
a static class, JaVaFoApi, that contains the definition of a method that can be called to invoke, depending on the
parameters, the pairing engine, the pairing checker or the random generator.

The aforementioned method is:

 String JaVaFoApi.exec(int operation, Object... params);

that will execute the most common operations of JaVaFo (and a few others).

The first parameter (operation) may assume one of the following values:

operation A mandatory four digit code (Java type int), identifying the particular JaVaFo operation:

Code Mnemonics Description

1000 PAIRING Standard pairing

1001 PAIRING_WITH_BAKU Standard pairing, using, if applicable, the Baku Acceleration Method

1100 PRE_PAIRING_CHECKLIST
Check-list before doing the pairing

Note: this operation is undocumented using JaVaFo as a stand-alone program

1110 POST_PAIRING_CHECKLIST Check-list after the pairing has been done

1111 POST_PAIRING_WITH_BAKU_CHECKLIST
Check-list after the pairing has been done using, if applicable,
the BakuAcceleration Method

1200 CHECK_TOURNAMENT Check the correctness of a tournament

1210 CHECK_ONE_ROUND
Check the correctness of a single round of a tournament

Note: this operation is not possible using JaVaFo as a stand-alone program

1300 RANDOM_GENERATOR Generate a random tournament

1301 RANDOM_GENERATOR_WITH_BAKU
Generate a random tournament using, if applicable, the Baku
Acceleration Method

Then the parameter list of JaVaFoApi.exec may contain the following parameters in any order (it is their Java type
that identifies them):

input For RTG operations is optional. Mandatory for all other operations.

Java type Description

InputStream It is the stream thru which to read the TRF(x) of the tournament to be processed (a model
for RTG operations).

String Meaningful only if there is no InputStream parameter (otherwise it is ignored). It
represents the TRF(x) of the tournament to be processed (a model for RTG operations).

Properties Meaningful only for RTG operations if there are neither InputStream nor String
parameters (otherwise it is ignored).

It represents a collection of properties to be used during the generation of the random
tournaments (see Reducing randomness by way of a (RTG) configuration file for the
description of the usable properties).

In addition to the previous list, also FirstSeed is a usable property, and represents the
seed for the random-generator used by the RTG (the same seed will re-produce the same
TRF as long as the same build of javafo.jar is used).

output Optional OutputStream parameter thru which the result of the requested operation is returned. If missing,
the result of the operation will be returned in a String type thru the exec call (which is null, when there is an
OutputStream parameter).

extra Meaningful only for the CHECK_ONE_ROUND operation (otherwise it is ignored). It is an Integer (or an int)
representing the round to be checked.

Examples

String out = JaVaFoApi.exec(1301, inputStreamTRF, 6);

Return into out the TRF of a random-generated-tournament with the Baku Acceleration Method, using a model tournament read
thru the inputStreamTRF input-stream. The actual parameter "6" is ignored.

String out = JaVaFoApi.exec(1210, 6, new FileInputStream("C:\jvfck\trnXDW.trf"));

Return into out the result of the verification of the 6th round of the tournament described by the TRF file C:\jvfck\trnXDW.trf.

String out = JaVaFoApi.exec(1110, outputStream, trf);

Return thru the outputStream output-stream the post-pairing check-list for the tournament of which the TRF is contained in
the trf string. In out it is returned null.

Note: it is possible to use the above operation to retrieve the pairing of the round, but it is not a very practical way to do it.

JaVaFoApi.exec(1000, "Hello World", inputStreamTRF, outputStream);

Return thru the outputStream output-stream the pairings for the tournament of which the TRF has been read thru
the inputStreamTRF input-stream. The string "Hello World" is ignored.

Properties cfg = new Properties();

cfg.setProperty("PlayersNumber", 289);
cfg.setProperty("RoundsNumber", 9);
JaVaFoApi.exec(1300, cfg, new FileOutputStream("C:\jvfgen\trP289R9.trf");

Put into the file c:\jvfgen\trP289R9.trf the TRF of a random-generated-tournament with 289 players and 9 rounds.

	Introduction
	JaVaFo as a stand-alone program
	How to input the data
	Interpretation extensions
	Unusual info extensions
	Extra codes extensions
	TRF(x) sample

	How to invoke JaVaFo
	How to read the output of JaVaFo
	Extensions and other options
	Absent players
	Scoring point system
	Ranking id
	First round pairing
	Accelerated rounds
	Baku Acceleration Method

	Forbidden pairs
	Check-list
	Release and build numbers

	Pairings Checker
	Random Tournament Generator (RTG)
	Reducing randomness by way of a (RTG) configuration file
	Reducing randomness by way of a model tournament
	Repeating randomness (by using a seed)

	Quick recap

	JaVaFo as Java archive

